Electrostatically Assembling 2D Nanosheets of MXene and MOF-Derivatives into 3D Hollow Frameworks for Enhanced Lithium Storage.

SMALL(2019)

引用 142|浏览18
暂无评分
摘要
As an essential member of 2D materials, MXene (e.g., Ti3C2Tx) is highly preferred for energy storage owing to a high surface-to-volume ratio, shortened ion diffusion pathway, superior electronic conductivity, and neglectable volume change, which are beneficial for electrochemical kinetics. However, the low theoretical capacitance and restacking issues of MXene severely limit its practical application in lithium-ion batteries (LIBs). Herein, a facile and controllable method is developed to engineer 2D nanosheets of negatively charged MXene and positively charged layered double hydroxides derived from ZIF-67 polyhedrons into 3D hollow frameworks via electrostatic self-assembling. After thermal annealing, transition metal oxides (TMOs)@MXene (CoO/Co2Mo3O8@MXene) hollow frameworks are obtained and used as anode materials for LIBs. CoO/Co2Mo3O8 nanosheets prevent MXene from aggregation and contribute remarkable lithium storage capacity, while MXene nanosheets provide a 3D conductive network and mechanical robustness to facilitate rapid charge transfer at the interface, and accommodate the volume expansion of the internal CoO/Co2Mo3O8. Such hollow frameworks present a high reversible capacity of 947.4 mAh g(-1) at 0.1 A g(-1), an impressive rate behavior with 435.8 mAh g(-1) retained at 5 A g(-1), and good stability over 1200 cycles (545 mAh g(-1) at 2 A g(-1)).
更多
查看译文
关键词
3D frameworks,lithium-ion batteries,MOFs,MXene,transition metal oxides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要