A piperidinol-containing molecule is active against Mycobacterium tuberculosis by inhibiting the mycolic acid flippase activity of MmpL3

Journal of Biological Chemistry(2019)

引用 33|浏览21
暂无评分
摘要
Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a major human pathogen, and current treatment options to combat this disease are under threat because of the emergence of multidrug-resistant and extensively drug-resistant tuberculosis. High-throughput whole-cell screening of an extensive compound library has recently identified a piperidinol-containing molecule, PIPD1, as a potent lead compound against M. tuberculosis. Herein, we show that PIPD1 and related analogs exert in vitro bactericidal activity against the M. tuberculosis strain mc(2)6230 and also against a panel of multidrug-resistant and extensively drug-resistant clinical isolates of M. tuberculosis, suggesting that PIPD1's mode of action differs from those of most first- and second-line anti-tubercular drugs. Selection and DNA sequencing of PIPD1-resistant mycobacterial mutants revealed the presence of single-nucleotide polymorphisms in mmpL3, encoding an inner membrane-associated mycolic acid flippase in M. tuberculosis. Results from functional assays with spheroplasts derived from a M. smegmatis strain lacking the endogenous mmpL3 gene but harboring the M. tuberculosis mmpL3 homolog indicated that PIPD1 inhibits the MmpL3-driven translocation of trehalose monomycolate across the inner membrane without altering the proton motive force. Using a predictive structural model of MmpL3 from M. tuberculosis, docking studies revealed a PIPD1-binding cavity recently found to accommodate different inhibitors in M. smegmatis MmpL3. In conclusion, our findings have uncovered bactericidal activity of a new chemical scaffold. Its anti-tubercular activity is mediated by direct inhibition of the flippase activity of MmpL3 rather than by inhibition of the inner membrane proton motive force, significantly advancing our understanding of MmpL3-targeted inhibition in mycobacteria.
更多
查看译文
关键词
Mycobacterium tuberculosis,drug action,drug resistance,inhibitor,cell wall,antibiotic action,Flippase,MmpL3,PIPD1,therapeutic activity,Trehalose Monomycolate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要