Early Postnatal Manganese Exposure Reduces Rat Cortical and Striatal Biogenic Amine Activity in Adulthood.

TOXICOLOGICAL SCIENCES(2020)

引用 14|浏览12
暂无评分
摘要
Growing evidence from studies with children and animal models suggests that elevated levels of manganese during early development lead to lasting cognitive and fine motor deficits. This study was performed to assess presynaptic biogenic amine function in forebrain of adult Long-Evans rats exposed orally to 0, 25, or 50mg Mn/kg/day over postnatal day 1-21 or continuously from birth to the end of the study (approximately postnatal day 500). Intracerebral microdialysis in awake rats quantified evoked outflow of biogenic amines in the right medial prefrontal cortex and left striatum. Results indicated that brain manganese levels in the early life exposed groups (postnatal day 24) largely returned to control levels by postnatal day 66, whereas levels in the lifelong exposed groups remained elevated 10%-20% compared with controls at the same ages. Manganese exposure restricted to the early postnatal period caused lasting reductions in cortical potassium-stimulated extracellular norepinephrine, dopamine, and serotonin, and reductions in striatal extracellular dopamine. Lifelong manganese exposure produced similar effects with the addition of significant decreases in cortical dopamine that were not evident in the early postnatal exposed groups. These results indicate that early postnatal manganese exposure produces persistent deficits in cortical and striatal biogenic amine function. Given that these same animals exhibited lasting impairments in attention and fine motor function, these findings suggest that reductions in catecholaminergic activity are a primary factor underlying the behavioral effects caused by manganese, and indicate that children exposed to elevated levels of manganese during early development are at the greatest risk for neuronal deficiencies that persist into adulthood.
更多
查看译文
关键词
manganese,dopamine,norepinephrine,microdialysis,medial prefrontal cortex,striatum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要