Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks.

Biomaterials(2019)

引用 77|浏览12
暂无评分
摘要
The decellularized tissue/organ extracellular matrix (dECM) is a naturally derived biomaterial that inherits various functional components from the native tissue or organ. Recently, various kinds of tissue/organ dECM bioinks capable of encapsulating cells, combined with 3D cell printing, have enabled remarkable progress in tissue engineering and regenerative medicine. However, the way in which the dECM component compositions of each tissue of different origins interact with cells and dictate tissue-specific cell behavior in the 3D microenvironment remains mostly unknown. To address this issue, in-depth differential proteomic analyses of four porcine dECMs were performed. Specifically, the differential variations of matrisome protein composition in each decellularized tissue type were also uncovered, which can play a significant role by affecting the resident cells in specific tissues. Furthermore, microarray analyses of human bone marrow mesenchymal stem cells (hBMMSCs) printed with various dECM bioinks were conducted to reveal the effect of compositional variations in a tissue-specific manner at the cellular level depending on the multipotency of MSCs. Through whole transcriptome analysis, differential expression patterns of genes were observed in a tissue-specific manner, and this research provides strong evidence of the tissue-specific functionalities of dECM bioinks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要