Denitrosylation of nNOS induced by cerebral ischemia-reperfusion contributes to nitrosylation of CaMKII and its inhibition of autophosphorylation in hippocampal CA1.

T-Y Zhang, L-M Yu,X-H Yin, Q Yang, F Lu,J-Z Yan,C Li

EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES(2019)

引用 7|浏览14
暂无评分
摘要
OBJECTIVE: The aim of this study is to investigate the relation between CaMKII S-nitrosylation and its activation, as well as the underlying mechanism, after global cerebral ischemia-reperfusion. MATERIALS AND METHODS: The rat model of cerebral ischemia-reperfusion was established by four-vessel occlusion of 15 min and reperfusion of different times. nNOS inhibitor 7-nitroindazole (7-NI), exogenous nitric oxide donor GSNO (nitrosoglutathione), or N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 were administered before ischemia. The expressions of S-nitrosylation and phosphorylation of CaMKII and nNOS were detected by biotin switch assay, immunoblotting, and immunohistochemical staining after cerebral ischemia-reperfusion. The survival of hippocampal CA1 pyramidal cells after administration of the three drugs was examined by cresyl violet staining. RESULTS: Following cerebral ischemia-reperfusion, the S-nitrosylation of CaMKII was increased, accompanied by a decrease of phosphorylation, suggesting a decrease of activity (p<0.05). Meanwhile, the phosphorylation and S-nitrosylation of nNOS were notably decreased at the same time point (p<0.05). The administration of 7-NI, GSNO, and MK-801 increased the S-nitrosylation and phosphorylation of nNOS, leading to the attenuation of increased S-nitrosylation and decreased autophosphorylation of CaMKII after cerebral ischemia-reperfusion (p<0.05). Administration of MK-801, GSNO, and 7-NI significantly decreased the neuronal damage in rat hippocampal CA1 caused by cerebral ischemia-reperfusion (p<0.05). CONCLUSIONS: After cerebral ischemia-reperfusion, the decrease of autophosphorylation of CaMKII regulated by its S-nitrosylation may be due to the denitrosylation of nNOS and subsequent NO production. Increasing the phosphorylation of CaMKII by nNOS inhibitor, exogenous NO donor or NMDA receptor antagonist exerted neuroprotective effects against cerebral ischemia-reperfusion injury.
更多
查看译文
关键词
S-nitrosylation,CaMKII,nNOS,Cerebral ischemia-reperfusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要