Arabidopsis H+-Atpase Aha1 Controls Slow Wave Potential Duration And Wound-Response Jasmonate Pathway Activation

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA(2019)

引用 80|浏览9
暂无评分
摘要
Electrogenic proton pumps have been implicated in the generation of slow wave potentials (SWPs), damage-induced membrane depolarizations that activate the jasmonate (JA) defense pathway in leaves distal to wounds. However, no defined H+-ATPases have been shown to modulate these electrical signals. Pilot experiments revealed that the proton pump activator fusicoccin attenuated SWP duration in Arabidopsis. Using mutant analyses, we identified Arabidopsis H+-ATPase 1 (AHA1) as a SWP regulator. The duration of the repolarization phase was strongly extended in reduced function aha1 mutants. Moreover, the duration of SWP repolarization was shortened in the presence of a gain-of-function AHA1 allele. We employed aphid electrodes to probe the effects of the aha1 mutation on wound-stimulated electrical activity in the phloem. Relative to the wild type, the aha1-7 mutant increased the duration and reduced the amplitudes of electrical signals in sieve tube cells. In addition to affecting electrical signaling, expression of the JA pathway marker gene JAZ10 in leaves distal to wounds was enhanced in aha1-7. Consistent with this, levels of wound-response jasmonoyl-isoleucine were enhanced in the mutant, as was defense against a lepidopteran herbivore. The work identifies a discrete member of the P-type ATPase superfamily with a role in leaf-to-leaf electrical signaling and plant defense.
更多
查看译文
关键词
jasmonate, proton ATPase, wound, vasculature, defense
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要