Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures

Chemistry and Physics of Lipids(2020)

引用 8|浏览2
暂无评分
摘要
Low-temperature molecular mobility and packing in biological tissues are important for their survival upon cryopreservation. Electron paramagnetic resonance (EPR) in its pulsed version of electron spin echo (ESE) allows studying stochastic librations of spin-labeled molecules, the type of motion which dominates at low temperatures. These librations are characterized by the parameter <α2>τc where <α2> is the mean squared angular amplitude and τc is the correlation time for the motion. This parameter is known to be larger for higher temperature and for looser intermolecular structure. In this work, ESE data for the bilayers comprised of doubly-unsaturated DOPC (dioleoyl-glycero-phosphocholine) lipids and mono-unsaturated POPC (palmitoyl-oleoyl-glycero-phosphocholine) lipids with spin-labeled stearic acids added were obtained in the temperature range between 80 and 210 K; the results were compared also with the previously obtained data for fully-saturated DPPC (dipalmitoyl-glycero-phosphocholine) lipid bilayers [J. Phys. Chem. B 2014, 118, 12,478–12,485; Appl. Magn. Reson. 2018, 49, 1369–1383]. It turned out that for DOPC bilayers the <α2>τc values are of intermediate magnitude between those for POPC and DPPC bilayers, which implies an intermediate density of lipid packing. A possible explanation of this result could be rearrangement at cryogenic temperatures of the DOPC lipid tails, with their terminal segments folding cooperatively. This interpretation is also in agreement with the known thermodynamic properties of gel-fluid transition for DOPC bilayer.
更多
查看译文
关键词
Biological membranes,EPR,Electron spin echo,Spin labels,Stearic acid,Cryopreservation,Gel-fluid transition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要