Mesenchymal Stromal Cells Modulate Peripheral Stress-Induced Innate Immune Activation Indirectly Limiting the Emergence of Neuroinflammation-Driven Depressive and Anxiety-like Behaviors.

Biological psychiatry(2019)

引用 26|浏览5
暂无评分
摘要
BACKGROUND:Hyperactivation of innate immunity has been implicated in the etiology of mood disorders, including major depressive disorder (MDD). Mesenchymal stromal cells (MSCs) have demonstrated potent immunomodulatory capabilities in the context of chronic inflammatory disease and injury but have yet to be evaluated in stress-based preclinical models of MDD. We sought to test the ability of intravenous MSCs to modulate innate immune activation and behavioral patterns associated with repeated social defeat (RSD). METHODS:Murine RSD-induced innate immune activation as well as depressive and anxiety-like behaviors were assessed in unstressed, RSD, and RSD + human MSC groups. Biodistribution and fate studies were performed to inform potential mechanisms of action. RESULTS:MSCs reduced stress-induced circulating proinflammatory cytokines, monocytes, neuroinflammation, and depressive and anxiety-like behaviors. Biodistribution analyses indicated that infused MSCs distributed within peripheral organs without homing to the brain. Murine neutrophils targeted MSCs in the lungs within hours of administration. MSCs and recipient neutrophils were cleared by recipient macrophages promoting a switch toward a regulatory phenotype and systemic resolution of inflammation. CONCLUSIONS:Peripheral delivery of MSCs modulates central nervous system inflammatory processes and aberrant behavioral patterns in a stress-based rodent model of MDD and anxiety. Recent studies suggest that host immune cell-mediated phagocytosis of MSCs in vivo can trigger an immunomodulatory cascade, resulting in resolution of inflammation. Our data suggest that similar mechanisms may protect distal organs, including the brain, from systemic, stress-induced proinflammatory spikes and may uncover unexpected targets in the periphery for novel or adjunct treatment for a subset of patients with MDD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要