Polarization influence and its mitigation on laser frequency noise measurement by a short-delayed self-homodyne interference method.

APPLIED OPTICS(2019)

引用 4|浏览16
暂无评分
摘要
This paper investigated how a polarization state influences frequency noise measurement accuracy of the short-delayed self-homodyne interference method. An autopolarization control method was demonstrated to mitigate polarization-induced fading (PIF) in a 120-deg phase difference Mach-Zehnder Interferometer (MZI). This method used a feedback adjustment with simulated annealing algorithm, which had the advantages of a short control period, high accuracy, and easy implementation. Frequency fluctuations' power spectral density and line-width results measured by the improved MZI were consistent with the results of the Michelson interferometer, which used the Faraday rotator mirrors (FRMs) to overcome PIF. The novel MZI structure is unrestricted to FRMs and can extend the capability of the short-delayed self-homodyne interference technique for many special bands' laser frequency noise measurements such as visible bands. (C) 2019 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要