Calculation of quantum chemical two-electron integrals by applying compiler technology on GPU.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2019)

引用 29|浏览19
暂无评分
摘要
In this article, we present an effective approach to calculate quantum chemical two-electron integrals over basis sets consisting of Gaussian-type basis functions on graphical processing unit (GPU). Our framework generates several different variants called routes to the same integral problem with different integral algorithms (McMurchie-Davidson, Head-Gordon-Pople, and Rys) and precision. Each route is benchmarked on more GPU architectures, and with this data, a model is fitted to select the best available route for an integral task given a GPU architecture. Moreover, this approach supports the computation of high angular momentum orbitals up to g effectively on GPU, tested up to cc-pVQZ-sized basis sets. Rigorous analysis is shown regarding the effectiveness of our method. Molecule simulations with several basis sets are measured using NVIDIA GTX 1080 Ti, NVIDIA P100, and NVIDIA V100 cards.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要