Ìn situ inactivation of human norovirus GII.4 by cold plasma: Ethidium monoazide (EMA)-coupled RT-qPCR underestimates virus reduction and fecal material suppresses inactivation

Food Microbiology(2020)

引用 36|浏览22
暂无评分
摘要
Cold atmospheric-gaseous plasma (CAP) is an emerging non-thermal technology for decontamination of foodborne bacterial and viral pathogens. We obtained a >5 log10 reduction in the titer (TCID50) of feline calicivirus (FCV) on stainless steel discs and Romaine lettuce leaves after 3 min wet exposure to air plasma generated by a two-dimensional array of integrated coaxial-microhollow dielectric barrier discharge (2D-AICM-DBD). However, when human norovirus (HuNoV GII.4) was treated for 5 min under the same conditions, ~2.6 log10 (>99.5%) reduction in genome copy number was observed as measured by ethidium monoazide-coupled RT-qPCR (EMA-RT-qPCR). To assess this discrepancy, we studied CAP's effect on FCV by the cell culture method and by the EMA-coupled RT-qPCR method. It was found that the molecular titration method (EMA-RT-qPCR) underestimates the level of virus reduction by CAP. Additionally, the fecal matter present in HuNoV samples partially suppressed virucidal activity of CAP. Assuming that the lower virus reduction measured by EMA-RT-qPCR method compared to cell culture method for FCV is the same as for HuNoV, we can conclude that FCV may be used as a surrogate for HuNoV to assess the virucidal effect of CAP. CAP is able to inactivate 3.5 Log10 units of HuNoV at low titers after 2 min of exposure.
更多
查看译文
关键词
Cold plasma,HuNoV inactivation,EMA-coupled RT-qPCR,RNase-coupled RT-qPCR,FCV versus HuNoV,Lettuce,Steel surface
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要