Digital Light Processing of Freeze-cast Ceramic Layers for Macroporous Calcium Phosphate Scaffolds with Tailored Microporous Frameworks.

MATERIALS(2019)

引用 15|浏览4
暂无评分
摘要
The objective of the present study is to demonstrate the versatility of the digital light processing (DLP) technique particularly when using a freeze-cast ceramic layer as the feedstock, which can manufacture porous calcium phosphate (CaP) scaffolds with arbitrarily designed macroporous structures with tailored microporous frameworks specially designed for bone scaffold applications. For this goal, we employed camphene-camphor as the freezing vehicle and porogen for the preparation of photocurable CaP suspensions containing diurethane dimethacrylate (UDMA) monomers. After freeze-casting, the CaP suspensions could be solidified at controlled temperatures (similar to 33-38 degrees C) and then be photopolymerized by DLP. All produced CaP scaffolds fairly resembled the designed macroporous structures (the gyroid structure with two interpenetrating macropore networks). In addition, numerous micropores were created in the CaP filaments, while the microporosity increased with increasing the camphene-camphor amount from 40 vol % to 60 vol %. As a consequence, compressive strength and modulus of hierarchically porous CaP scaffolds decreased due to an increase in overall porosity. However, reasonable mechanical properties could be obtained at high porosities owing to the CaP frameworks constructed in a periodic manner. In addition, excellent water penetration capability, biocompatibility, and apatite-forming ability were obtained, which were attributed to the microporous CaP frameworks with good pore interconnectivity and large surface area.
更多
查看译文
关键词
digital light processing,porogen,freeze-casting,porous ceramic scaffolds,hierarchical pores
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要