Expanding the Regulon of the Bradyrhizobium diazoefficiens NnrR Transcription Factor: New Insights Into the Denitrification Pathway.

FRONTIERS IN MICROBIOLOGY(2019)

引用 16|浏览3
暂无评分
摘要
Denitrification in the soybean endosymbiont Bradyrhizobium diazoefficiens is controlled by a complex regulatory network composed of two hierarchical cascades, FixLJ-FixK(2)-NnrR and RegSR-NifA. In the former cascade, the CRP/FNR-type transcription factors FixK(2) and NnrR exert disparate control on expression of core denitrifying systems encoded by napEDABC, nirK, norCBQD, and nosRZDFYLX genes in response to microoxia and nitrogen oxides, respectively. To identify additional genes controlled by NnrR and involved in the denitrification process in B. diazoefficiens, we compared the transcriptional profile of an nnrR mutant with that of the wild type, both grown under anoxic denitrifying conditions. This approach revealed more than 170 genes were simultaneously induced in the wild type and under the positive control of NnrR. Among them, we found the cycA gene which codes for the c(550) soluble cytochrome (CycA), previously identified as an intermediate electron donor between the bc(1) complex and the denitrifying nitrite reductase NirK. Here, we demonstrated that CycA is also required for nitrous oxide reductase activity. However, mutation in cycA neither affected nosZ gene expression nor NosZ protein steady-state levels. Furthermore, cycA, nnrR and its proximal divergently oriented nnrS gene, are direct targets for FixK(2) as determined by in vitro transcription activation assays. The dependence of cycA expression on FixK(2) and NnrR in anoxic denitrifying conditions was validated at transcriptional level, determined by quantitative reverse transcription PCR, and at the level of protein by performing heme c-staining of soluble cytochromes. Thus, this study expands the regulon of NnrR and demonstrates the role of CycA in the activity of the nitrous oxide reductase, the key enzyme for nitrous oxide mitigation.
更多
查看译文
关键词
CRP/FNR proteins,in vitro transcription,microoxia,nitrogen oxides,Rhizobia,transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要