Bose-Einstein Condensation Of Triplons Close To The Quantum Critical Point In The Quasi-One-Dimensional Spin-1/2 Antiferromagnet Navopo4

arxiv(2019)

引用 12|浏览25
暂无评分
摘要
Structural and magnetic properties of a quasi-one-dimensional spin-1/2 compound NaVOPO4 are explored by x-ray diffraction, magnetic susceptibility, high-field magnetization, specific heat, electron spin resonance, and P-31 nuclear magnetic resonance measurements, as well as complementary ab initio calculations. Whereas magnetic susceptibility of NaVOPO4 may be compatible with the gapless uniform spin chain model, detailed examination of the crystal structure reveals a weak alternation of the exchange couplings with the alternation ratio alpha similar or equal to 0.98 and the ensuing zero-field spin gap Delta(0)/k(B) similar or equal to 2.4 K directly probed by field-dependent magnetization measurements. No long-range order is observed down to 50 mK in zero field. However, applied fields above the critical field H-c1 similar or equal to 1.6 T give rise to a magnetic ordering transition with the phase boundary T-N proportional to (H - H-c(1))(1/phi), where phi similar or equal to 1.8 is close to the value expected for Bose-Einstein condensation of triplons. With its weak alternation of the exchange couplings and small spin gap, NaVOPO4 lies close to the quantum critical point.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要