Glomalin-related soil protein enhances the sorption of polycyclic aromatic hydrocarbons on cation-modified montmorillonite.

Environment International(2019)

引用 12|浏览5
暂无评分
摘要
This study investigated the sorption of phenanthrene (as a representative PAH) by cation-modified montmorillonites (Ca-MMT and Fe-MMT) under the influence of Glomalin-related soil protein (GRSP) fractions (EE-GRSP and T-GRSP). Batch sorption studies were carried out as a function of GRSP concentrations (0–500 mg/L), results suggested that the sorption capacities of Ca-MMT and Fe-MMT for phenanthrene were greatly enhanced. The phenanthrene sorption isotherms were in good agreement with the Linear and Freundlich models (R2 = 0.886–0.999). The Kd values increased from 4.14 to 60.76 L/kg for Ca-MMT and from 15.57 to 153.80 L/kg for Fe-MMT with the GRSP concentrations adding from 0 to 500 mg/L, respectively. Furthermore, the sorption of phenanthrene was higher on Fe-MMT than that on Ca-MMT. It is believed that GRSP developed a higher sorption level on Fe-MMT, resulting in higher phenanthrene sorption. Microscopic and Spectroscopic analyses confirmed that the effects of GRSP on phenanthrene sorption were attributed to the changes in the surface structure and the hydrophobic property of montmorillonites. In the sorption process, GRSP may sorb onto montmorillonites through cation-π interaction when a bridge linkage was formed, and phenanthrene bound with GRSP mainly via π-π electron donor-accepter interaction. The findings could provide an in-depth understanding of the ecological functions of GRSP and provide new insights into the pathways of PAH transport and fate in the contaminated fields.
更多
查看译文
关键词
Glomalin-related soil protein,Cation-modified montmorillonite,Phenanthrene,Binding,Sorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要