Independent Multi-states of Photo-responsive Polymer/Quantum Dot Nanocomposite Induced via Different Wavelengths of Light

SCIENTIFIC REPORTS(2019)

引用 5|浏览5
暂无评分
摘要
Stimuli-responsive systems are attractive since their properties can be controlled by external stimuli and/or surrounding environment. Recently, more than one stimulus is utilized in order to enhance the performance of systems, or to bypass undesired effects. However, most of previous research on multi-stimuli has been focused on enhancing or inducing changes in one type of response. Herein, we developed a nanocomposite material with independent multi-states composed of photo-responsive polymer and quantum dots (QDs), in which its properties can independently be controlled by different wavelengths of light. More specifically, azobenzene-incorporated poly(dimethylsiloxane) (AzoPDMS) triggers photobending (PB) by 365 nm light and uniformly dispersed methylammonium lead bromide perovskite (MAPbBr 3 ) QDs show photoluminescence (PL) by light below 500 nm. The PB and PL could be simultaneously and independently controlled by the wavelength of applied light creating multi-states. Our approach is novel in that it creates multiple independent states which can further be used to transfer information such as logic gates (00 (2) , 01 (2) , 10 (2) , 11 (2) ) and possibly widen its application to flexible and transparent opto-electric devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要