Privacy-Preserved Task Offloading in Mobile Blockchain With Deep Reinforcement Learning

IEEE Transactions on Network and Service Management(2020)

引用 115|浏览73
暂无评分
摘要
Blockchain technology with its secure, transparent and decentralized nature has been recently employed in many mobile applications. However, the process of executing extensive tasks such as computation-intensive data applications and blockchain mining requires high computational and storage capability of mobile devices, which would hinder blockchain applications in mobile systems. To meet this challenge, we propose a mobile edge computing (MEC) based blockchain network where multi-mobile users (MUs) act as miners to offload their data processing tasks and mining tasks to a nearby MEC server via wireless channels. Specially, we formulate task offloading, user privacy preservation and mining profit as a joint optimization problem which is modelled as a Markov decision process, where our objective is to minimize the long-term system offloading utility and maximize the privacy levels for all blockchain users. We first propose a reinforcement learning (RL)-based offloading scheme which enables MUs to make optimal offloading decisions based on blockchain transaction states, wireless channel qualities between MUs and MEC server and user's power hash states. To further improve the offloading performances for larger-scale blockchain scenarios, we then develop a deep RL algorithm by using deep Q-network which can efficiently solve large state space without any prior knowledge of the system dynamics. Experiment and simulation results show that the proposed RL-based offloading schemes significantly enhance user privacy, and reduce the energy consumption as well as computation latency with minimum offloading costs in comparison with the benchmark offloading schemes.
更多
查看译文
关键词
Blockchain,mobile edge computing,mining,task offloading,privacy,deep reinforcement learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要