Angiopoietin 1 attenuates interleukin-6-induced endothelial cell permeability through SHP-1.

Biochemical and biophysical research communications(2019)

引用 10|浏览9
暂无评分
摘要
The regulation of endothelial cell (EC) permeability is critical for the physiological homeostasis of blood vessels and tissues. The elevation of pro-inflammatory cytokines is highly associated with lesions, such as the increased vascular permeability of diabetic retinas. We have previously reported that interleukin-6 (IL-6) increases EC permeability through the downregulation of tight junction protein expression. Angiopoietin 1 (Ang1) has an anti-permeability function, but the effect of Ang1 on vascular permeability induced by inflammatory cytokines is unclear. In the present study, we investigated the effect of Ang1 on IL-6-induced EC permeability and its underlying molecular mechanisms. We demonstrated that Ang1 inhibited the IL-6-induced increase in EC permeability by inhibiting the reductions in the levels of tight junction protein ZO-1 and occludin, which was related to the decrease in vascular endothelial growth factor (VEGF) secretion through the inhibition of STAT3 activation by Ang1. Mechanistically, Ang1 induced the dissociation of the tyrosine phosphatase SHP-1 from the Tie2 receptor and increased the binding of SHP-1 to JAK1, JAK2, and STAT3, which are IL-6 downstream signaling proteins. We conclude that SHP-1 plays an important role in the Ang1-induced inhibition of JAK/STAT3 signaling. These results provide evidence for a potential beneficial role of Ang1 in suppressing the vascular permeability induced by the pro-inflammatory cytokine IL-6 in diabetic retinopathy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要