Lambda-cyhalothrin exposure alters purine nucleotide hydrolysis and nucleotidase gene expression pattern in platelets and liver of rats

Chemico-Biological Interactions(2019)

引用 10|浏览4
暂无评分
摘要
Lambda-cyhalothrin (LCT) is a broad-spectrum pesticide widely used in agriculture throughout the world. This pesticide is considered a potential contaminant of surface and underground water as well as food, posing a risk to ecosystems and humans. In this sense, we decided to evaluate the activity of enzymes belonging to the purinergic system, which is linked with regulation of extracellular nucleotides and nucleosides, such as adenosine triphosphate (ATP) and adenosine (Ado) molecules involved in the regulation of inflammatory response. However, there are no data concerning the effects of LCT exposure on the purinergic system, where extracellular nucleotides act as signaling molecules. The aim of this study was to evaluate nucleotide hydrolysis by E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase), Ecto-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase), ecto-5′-nucleotidase and ecto-adenosine deaminase (E-ADA) in platelets and liver of adult rats on days 7, 30, 45 and 60 after daily gavage with 6.2 and 31.1 mg/kg bw of LCT. Gene expression patterns of NTPDases1–3 and 5′-nucleotidase were also determined in those tissues. In parallel, lambda-cyhalothrin metabolites [3-(2-chloro-3,3,3- trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic acid (CFMP), 4-hydroxyphenoxybenzoic acid (4-OH-3-PBA), and 3-phenoxybenzoic acid (3-PBA)] were measured in plasma. Results showed that exposure rats to LCT caused a significant increase in the assessed enzymes activities. Gene expression pattern of ectonucleotidases further revealed a significant increase in E-NTPDase1, E-NTPDase2, and E-NTPDase3 mRNA levels after LCT administration at all times. A dose-dependent increase in LCT metabolite levels was also observed but there no significant variations in levels from weeks to week, suggesting steady-steady equilibrium. Correlation analyses revealed that LCT metabolites in the liver and plasma were positively correlated with the adenine nucleotides hydrolyzing enzyme, E-ADA and E-NPP activities in platelets and liver of rats exposed to lambda-cyhalothin.
更多
查看译文
关键词
Lambda-cyhalothrin,Platelets,Liver,Ectonucleotidase,Adenosine deaminase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要