Autonomic cardiovascular control changes in recent heart transplant recipients lead to physiological limitations in response to orthostatic challenge and isometric exercise

European Journal of Applied Physiology(2019)

引用 14|浏览23
暂无评分
摘要
Purpose Heart transplantation causes denervation of the donor heart, but the consequences for cardiovascular homeostasis remain to be fully understood. The present study investigated cardiovascular autonomic control at supine rest, during orthostatic challenge and during isometric exercise in heart transplant recipients (HTxR). Methods A total of 50 HTxRs were investigated 7–12 weeks after transplant surgery and compared with 50 healthy control subjects. Continuous, noninvasive recordings of cardiovascular variables were carried out at supine rest, during 15 min of 60° head-up tilt and during 1 min of 30% of maximal voluntary handgrip. Plasma and urine catecholamines were assayed, and symptoms were charted. Results At supine rest, heart rate, blood pressures and total peripheral resistance were higher, and stroke volume and end diastolic volume were lower in the HTxR group. During tilt, heart rate, blood pressures and total peripheral resistance increased less, and stroke volume and end diastolic volume decreased less. During handgrip, heart rate and cardiac output increased less, and stroke volume and end diastolic volume decreased less. Orthostatic symptoms were similar across the groups, but the HTxRs complained more of pale and cold hands. Conclusion HTxRs are characterized by elevated blood pressures and total peripheral resistance at supine rest as well as attenuated blood pressures and total peripheral resistance responses during orthostatic challenge, possibly caused by low-pressure cardiopulmonary baroreceptor denervation. In addition, HTxRs show attenuated cardiac output response during isometric exercise due to efferent sympathetic denervation. These physiological limitations might have negative functional consequences.
更多
查看译文
关键词
Heart transplantation,Autonomic cardiovascular control,Catecholamines,Denervation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要