Age- and Nicotine-Associated Gene Expression Changes in the Hippocampus of APP/PS1 Mice

Journal of molecular neuroscience : MN(2019)

引用 12|浏览7
暂无评分
摘要
The etiology of Alzheimer’s disease (AD) has been intensively studied. However, little is known about the molecular alterations in early-stage and late-stage AD. Hence, we performed RNA sequencing and assessed differentially expressed genes (DEGs) in the hippocampus of 18-month and 7-month-old APP/PS1 mice. Moreover, the DEGs induced by treatment with nicotine, the nicotinic acetylcholine receptor agonist that is known to improve cognition in AD, were also analyzed in old and young APP/PS1 mice. When comparing old APP/PS1 mice with their younger littermates, we found an upregulation in genes associated with calcium overload, immune response, cancer, and synaptic function; the transcripts of 14 calcium ion channel subtypes were significantly increased in aged mice. In contrast, the downregulated genes in aged mice were associated with ribosomal components, mitochondrial respiratory chain complex, and metabolism. Through comparison with DEGs in normal aging from previous reports, we found that changes in calcium channel genes remained one of the prominent features in aged APP/PS1 mice. Nicotine treatment also induced changes in gene expression. Indeed, nicotine augmented glycerolipid metabolism, but inhibited PI3K and MAPK signaling in young mice. In contrast, nicotine affected genes associated with cell senescence and death in old mice. Our study suggests a potential network connection between calcium overload and cellular signaling, in which additional nicotinic activation might not be beneficial in late-stage AD.
更多
查看译文
关键词
Alzheimer’s disease,Transcriptome,Hippocampus,Nicotine,Alternative splicing,Calcium overload
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要