Nonlinear mixed-effects pharmacokinetic modeling of the novel COX-2 selective inhibitor vitacoxib in dogs.

JOURNAL OF VETERINARY PHARMACOLOGY AND THERAPEUTICS(2019)

引用 11|浏览10
暂无评分
摘要
The objective of this study was to develop a nonlinear mixed-effects model of vitacoxib disposition kinetics in dogs after intravenous (I.V.), oral (P.O.), and subcutaneous (S.C.) dosing. Data were pooled from four consecutive pharmacokinetic studies in which vitacoxib was administered in various dosing regimens to 14 healthy beagle dogs. Plasma concentration versus time data were fitted simultaneously using the stochastic approximation expectation maximization (SAEM) algorithm for nonlinear mixed-effects as implemented in Monolix version 2018R2. Correlations between random effects and significance of covariates on population parameter estimates were evaluated using multiple samples from the posterior distribution of the random effects. A two-compartment mamillary model with first-order elimination and first-order absorption after P.O. and S.C. administration, best described the available pharmacokinetic data. Final parameter estimates indicate that vitacoxib has a low-to-moderate systemic clearance (0.35 L hr(-1) kg(-1)) associated with a low global extraction ratio, but a large volume of distribution (6.43 L/kg). The absolute bioavailability after P.O. and S.C. administration was estimated at 10.5% (fasted) and 54.6%, respectively. Food intake was found to increase vitacoxib oral bioavailability by a fivefold, while bodyweight (BW) had a significant impact on systemic clearance, thereby confirming the need for BW adjustment with vitacoxib dosing in dogs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要