Heritability of human visual contour integration—an integrated genomic study

EUROPEAN JOURNAL OF HUMAN GENETICS(2019)

引用 2|浏览35
暂无评分
摘要
Contour integration, a key visual function to deal with occlusion and discontinuity in natural scenes, is essential to human survival. However, individuals are not equally well equipped with this ability. In particular, contour integration deficiencies are commonly detected in patients with mental disorders, especially schizophrenia. To understand the underlying sources of these individual differences, the current study investigated the genetic basis of contour integration in humans. A total of 2619 normal participants were tested on their ability to detect continuous contours embedded in a cluttered background. Quantitative genomic analysis was performed, involving heritability estimation based on single nucleotide polymorphisms (SNPs) and association testing at SNP, gene, and pathway levels. Heritability estimation showed that common SNPs contributed 49.5% (standard error of the mean = 15.6%) of overall phenotypic variation, indicating moderate heritability of contour integration. Two-stage genome-wide association analysis (GWAS) detected four SNPs reaching genome-wide significance in the discovery test ( N = 1931) but not passing the replication test ( N = 688). Gene-level analysis further revealed a significant genome-wide association of a microRNA-encoding gene MIR1178 in both the discovery and replication cohorts. Another gene poly(A)-binding protein nuclear 1 like, cytoplasmic ( PABPN1L ) showed suggestive significance in the discovery cohort ( p < 1 × 10 −4 ) and was replicated in the replication cohort ( p = 0.009). The pathway analysis did not detect any significant pathway. Taken together, this study identified significant gene associations with contour integration and provided support for a genetic transmission of the ability to perceive continuous contours in the environment.
更多
查看译文
关键词
Genome-wide association studies,Human behaviour,Biomedicine,general,Human Genetics,Bioinformatics,Gene Expression,Cytogenetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要