Cloudlstm: A Recurrent Neural Model For Spatiotemporal Point-Cloud Stream Forecasting

THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2021)

引用 30|浏览145
暂无评分
摘要
This paper introduces CloudLSTM, a new branch of recurrent neural models tailored to forecasting over data streams generated by geospatial point-cloud sources. We design a Dynamic Point-cloud Convolution (DConv) operator as the core component of CloudLSTMs, which performs convolution directly over point-clouds and extracts local spatial features from sets of neighboring points that surround different elements of the input. This operator maintains the permutation invariance of sequence-to-sequence learning frameworks, while representing neighboring correlations at each time step - an important aspect in spatiotemporal predictive learning. The DConv operator resolves the grid-structural data requirements of existing spatiotemporal forecasting models and can be easily plugged into traditional LSTM architectures with sequence-to-sequence learning and attention mechanisms. We apply our proposed architecture to two representative, practical use cases that involve point-cloud streams, i.e., mobile service traffic forecasting and air quality indicator forecasting. Our results, obtained with real-world datasets collected in diverse scenarios for each use case, show that CloudLSTM delivers accurate long-term predictions, outperforming a variety of competitor neural network models.
更多
查看译文
关键词
recurrent neural model,forecasting,stream,point-cloud
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要