GCN-MF: Disease-Gene Association Identification By Graph Convolutional Networks and Matrix Factorization

KDD(2019)

引用 135|浏览158
暂无评分
摘要
Discovering disease-gene association is a fundamental and critical biomedical task, which assists biologists and physicians to discover pathogenic mechanism of syndromes. With various clinical biomarkers measuring the similarities among genes and disease phenotypes, network-based semi-supervised learning (NSSL) has been commonly utilized by these studies to address this class-imbalanced large-scale data issue. However, most existing NSSL approaches are based on linear models and suffer from two major limitations: 1) They implicitly consider a local-structure representation for each candidate; 2) They are unable to capture nonlinear associations between diseases and genes. In this paper, we propose a new framework for disease-gene association task by combining Graph Convolutional Network (GCN) and matrix factorization, named GCN-MF. With the help of GCN, we could capture non-linear interactions and exploit measured similarities. Moreover, we define a margin control loss function to reduce the effect of sparsity. Empirical results demonstrate that the proposed deep learning algorithm outperforms all other state-of-the-art methods on most of metrics.
更多
查看译文
关键词
deep learning, disease-gene association, graph convolutional networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要