K-series approximation of vectorial optical fields for designing diffractive optical elements with subwavelength feature sizes

OPTICS EXPRESS(2021)

引用 3|浏览0
暂无评分
摘要
Diffractive optical elements (DOEs) are widely applied as compact solutions for desired light manipulations via wavefront shaping. Recent advanced chip applications further require their feature sizes to move down to the subwavelength, which inevitably brings forth vectorial effects of optical fields and makes the typical scalar-based theory invalid. However, simulating and optimizing their vectorial fields, which are associated with billions of adjustable parameters in the optical element, are difficult to do, because of the issues of numerical stability and the highly-demanding computational cost. To address this problem, this research proposes an applicable algorithm by means of a wave-vector (k) series approximation of vectorial optical fields. On the basis of the semi-analytical rigorous coupled wave analysis (RCWA), an adequate selection scheme on k-series enables computationally efficient yet still predictive calculations for DOEs. The performance estimations for exemplary designs by the finite difference time domain (FDTD) method show that the predicted intensity profiles by the proposed algorithm agree with the target by just a fractional error. Together with optimizing the geometrical degrees of freedom (e.g., DOE depth h) as compensation for errors from the truncation of k-series, the algorithm demonstrates its outperformance by one or two orders of magnitude in accuracy versus the scalar-based model, and demands only a reasonable computational resource. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要