Direct/iterative hybrid solver for scattering by inhomogeneous media

Oscar P. Bruno, Ambuj Pandey

arxiv(2022)

引用 0|浏览2
暂无评分
摘要
This paper presents a fast high-order method for the solution of two-dimensional problems of scattering by penetrable inhomogeneous media, with application to high-frequency configurations containing (possibly) discontinuous refractivities. The method relies on a hybrid direct/iterative combination of 1)~A differential volumetric formulation (which is based on the use of appropriate Chebyshev differentiation matrices enacting the Laplace operator) and, 2)~A second-kind boundary integral formulation. The approach enjoys low dispersion and high-order accuracy for smooth refractivities, as well as second-order accuracy (while maintaining low dispersion) in the discontinuous refractivity case. The solution approach proceeds by application of Impedance-to-Impedance (ItI) maps to couple the volumetric and boundary discretizations. The volumetric linear algebra solutions are obtained by means of a multifrontal solver, and the coupling with the boundary integral formulation is achieved via an application of the iterative linear-algebra solver GMRES. In particular, the existence and uniqueness theory presented in the present paper provides an affirmative answer to an open question concerning the existence of a uniquely solvable second-kind ItI-based formulation for the overall scattering problem under consideration. Relying on a modestly-demanding scatterer-dependent precomputation stage (requiring in practice a computing cost of the order of $O(N^{\alpha})$ operations, with $\alpha \approx 1.07$, for an $N$-point discretization), together with fast ($O(N)$-cost) single-core runs for each incident field considered, the proposed algorithm can effectively solve scattering problems for large and complex objects possibly containing strong refractivity contrasts and discontinuities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要