A mathematical analysis of EDAs with distance-based exponential models

GECCO(2022)

引用 1|浏览24
暂无评分
摘要
Estimation of Distribution Algorithms have been successfully used to solve permutation-based Combinatorial Optimization Problems. In this case, the algorithms use probabilistic models specifically designed for codifying probability distributions over permutation spaces. One class of these probability models are distance-based exponential models, and one example of this class is the Mallows model. In spite of its practical success, the theoretical analysis of Estimation of Distribution Algorithms for permutation-based Combinatorial Optimization Problems has not been developed as extensively as it has been for binary problems. With this motivation, this paper presents a first mathematical analysis of the convergence behavior of Estimation of Distribution Algorithms based on Mallows models. The model removes the randomness of the algorithm in order to associate a dynamical system to it. Several scenarios of increasing complexity with different fitness functions and initial probability distributions are analyzed. The obtained results show: a) the strong dependence of the final results on the initial population, and b) the possibility to converge to non-degenerate distributions even in very simple scenarios, which has not been reported before in the literature.
更多
查看译文
关键词
Estimation of Distribution Algorithm, Permutation-based Combinatorial Optimization Problems, Mathematical Modeling, Theoretical Analysis, Mallows model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要