Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils.

MOLECULES(2019)

引用 380|浏览6
暂无评分
摘要
Background: The antimicrobial activity of essential oils has been reported in hundreds of studies, however, the great majority of these studies attribute the activity to the most prevalent compounds without analyzing them independently. Therefore, the aim was to investigate the antibacterial activity of 33 free terpenes commonly found in essential oils and evaluate the cellular ultrastructure to verify possible damage to the cellular membrane. Methods: Screening was performed to select substances with possible antimicrobial activity, then the minimal inhibitory concentrations, bactericidal activity and 24-h time-kill curve studies were evaluated by standard protocols. In addition, the ultrastructure of control and death bacteria were evaluated by scanning electron microscopy. Results: Only 16 of the 33 compounds had antimicrobial activity at the initial screening. Eugenol exhibited rapid bactericidal action against Salmonella enterica serovar Typhimurium (2 h). Terpineol showed excellent bactericidal activity against S. aureus strains. Carveol, citronellol and geraniol presented a rapid bactericidal effect against E. coli. Conclusions: The higher antimicrobial activity was related to the presence of hydroxyl groups (phenolic and alcohol compounds), whereas hydrocarbons resulted in less activity. The first group, such as carvacrol, l-carveol, eugenol, trans-geraniol, and thymol, showed higher activity when compared to sulfanilamide. Images obtained by scanning electron microscopy indicate that the mechanism causing the cell death of the evaluated bacteria is based on the loss of cellular membrane integrity of function. The present study brings detailed knowledge about the antimicrobial activity of the individual compounds present in essential oils, that can provide a greater understanding for the future researches.
更多
查看译文
关键词
essential oil,terpenes,bacteria,time kill kinetics,antimicrobial activity,bactericidal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要