Compression Generated by a 3D Supracellular Actomyosin Cortex Promotes Embryonic Stem Cell Colony Growth and Expression of Nanog and Oct4.

Cell systems(2019)

引用 24|浏览9
暂无评分
摘要
Mechanical factors play critical roles in mammalian development. Here, we report that colony-growing mouse embryonic stem cells (mESCs) generate significant tension on the colony surface through the contraction of a three-dimensional supracellular actomyosin cortex (3D-SAC). Disruption of the 3D-SAC, whose organization is dependent on the Rho/Rho-associated kinase (ROCK) signals and E-cadherin, results in mESC colony destruction. Reciprocally, compression force, which is generated by the 3D-SAC, promotes colony growth and expression of Nanog and Oct4 in mESCs and blastocyst development of mouse embryos. These findings suggest that autonomous cell forces regulate embryonic stem cells fate determination and provide insight regarding the biomechanical regulation of embryonic development.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要