Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery.

Bioresource technology(2019)

引用 73|浏览10
暂无评分
摘要
The suitability of integrating biological and thermal transformation of microalgal biomass to design a biorefinery was studied. The mixed cultivation of Chlorella sp. and Bracteacoccus sp. in city wastewater produced 12 g L-1 of biomass (0.77 g L-1 day-1) and removed nitrates and phosphates by 68% and 75%, respectively. Microalgae outcompeted the contaminating microbes by raising the pH of wastewater to 9.93. The lipid-free residual biomass was pyrolyzed at four heating rates (10, 20, 30, 40 °C min-1) which showed a three-stage pyrolysis. The activation energies (182-256 kJ mol-1) and their corresponding lower enthalpies at the conversional fractions from 0.2 to 0.6 indicated that product formation was being favored. The values of pre-exponential factors (1015-17 s-1), Gibbs free energy (159-190 kJ mol-1) and entropy (43-81 J mol-1) showed efficient pyrolysis. The data may lead to establish a robust microalgal biorefinery to produce biomass and energy along with primary treatment of city wastewater.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要