The Ussing chamber system for measuring intestinal permeability in health and disease

BMC Gastroenterology(2019)

引用 69|浏览16
暂无评分
摘要
Background The relationship between intestinal epithelial integrity and the development of intestinal disease is of increasing interest. A reduction in mucosal integrity has been associated with ulcerative colitis, Crohn’s disease and potentially could have links with colorectal cancer development. The Ussing chamber system can be utilised as a valuable tool for measuring gut integrity. Here we describe step-by-step methodology required to measure intestinal permeability of both mouse and human colonic tissue samples ex vivo, using the latest equipment and software. This system can be modified to accommodate other tissues. Methods An Ussing chamber was constructed and adapted to support both mouse and human tissue to measure intestinal permeability, using paracellular flux and electrical measurements. Two mouse models of intestinal inflammation (dextran sodium sulphate treatment and T regulatory cell depletion using C57BL/6-FoxP3 DTR mice) were used to validate the system along with human colonic biopsy samples. Results Distinct regional differences in permeability were consistently identified within mouse and healthy human colon. In particular, mice showed increased permeability in the mid colonic region. In humans the left colon is more permeable than the right. Furthermore, inflammatory conditions induced chemically or due to autoimmunity reduced intestinal integrity, validating the use of the system. Conclusions The Ussing chamber has been used for many years to measure barrier function. However, a clear and informative methods paper describing the setup of modern equipment and step-by-step procedure to measure mouse and human intestinal permeability isn’t available. The Ussing chamber system methodology we describe provides such detail to guide investigation of gut integrity.
更多
查看译文
关键词
Intestinal permeability,Colon,Transepithelial resistance,Paracellular flux
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要