PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1

SCIENTIFIC REPORTS(2019)

引用 16|浏览12
暂无评分
摘要
Most deaths from breast cancer result from tumour recurrence, which is typically an incurable disease. Down-regulation of the pro-apoptotic tumour suppressor protein prostate apoptosis response-4 (PAR-4) is required for breast cancer recurrence and resistance to chemotherapy. Recent advances in the analysis of apoptotic signalling networks have uncovered an important role for activation of caspase-8 following DNA damage by genotoxic drugs. DNA damage induces depletion of IAP proteins and causes caspase-8 activation by promoting the formation of a cytosolic cell death complex. We demonstrate that loss of PAR-4 in triple negative breast cancer cell lines (TNBC) mediates resistance to DNA damage-induced apoptosis and prevents activation of caspase-8. Moreover, loss of PAR-4 prevents DNA damage-induced cIAP1 depletion. PAR-4 functions downstream of caspase-8 by cleavage-induced nuclear translocation of the C-terminal part and we demonstrate that nuclear translocation of the C-terminal PAR-4 fragment leads to depletion of cIAP1 and subsequent caspase-8 activation. Specifically targeting cIAP1 with RNAi or Smac mimetics (LCL161) overcomes chemo-resistance induced by loss of PAR-4 and restores caspase-8 activation. Our data identify cIAP1 as important downstream mediator of PAR-4 and we provide evidence that combining Smac mimetics and genotoxic drugs creates vulnerability for synthetic lethality in TNBC cells lacking PAR-4.
更多
查看译文
关键词
Apoptosis,DNA damage response,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要