Quantitative Simultaneous Determination for Young’s Modulus and Adhesion of Low- k Thin Film by Non-destructive CZM-SAW Technique

Journal of Nondestructive Evaluation(2019)

引用 4|浏览2
暂无评分
摘要
Adhesion and Young’s modulus are of great interest in thin film science because these two properties are the most vital factors in determining the durability and stability of the device. Insufficient Young’s modulus and adhesion property are the most serious problems encountered in the application of low- k thin film which is widely used in microelectronic industry. In this study, the nondestructive surface acoustic wave (SAW) technique with cohesive zone model (CZM) is employed to determine the quantitative thin film Young’s modulus and adhesion simultaneously. By studying the influence of film adhesion on the determination of film Young’s modulus, a film adhesion and Young’s modulus simultaneous measuring method is proposed. Based on the original CZM-SAW technique, comprehensive matching process is executed in this simultaneous measuring method. By this method, interactive effects of these two parameters are taken into consideration in the determining process so that more accurate adhesion and Young’s modulus results can be acquired. In this paper, the adhesion and Young’s modulus of SiO 2 films and porous Black Diamond film are measured by the CZM-SAW technique. This study presents a high-precision measuring method for film adhesion and Young’s modulus. This paper also shows the promising advantages of the CZM-SAW technique in characterization of thin film properties.
更多
查看译文
关键词
Adhesion, Young’s modulus, Low-k film, Surface acoustic waves, Cohesive zone model, Nondestructive testing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要