Bioinspired Polydopamine‐Based Resistive‐Switching Memory on Cotton Fabric for Wearable Neuromorphic Device Applications

ADVANCED MATERIALS TECHNOLOGIES(2019)

引用 31|浏览32
暂无评分
摘要
Fabric-based electronic textiles (e-textiles) have been investigated for the fabrication of high-performance wearable electronic devices with good durability. Current e-textile technology is limited by not only the delicate characteristics of the materials used but also by the fabric substrates, which impose constraints on the fabrication process. A polydopamine (PDA)-intercalated fabric memory (PiFAM) with a resistive random access memory (RRAM) architecture is reported for fabric-based wearable devices, as a step towards promising neuromorphic devices beyond the most simple. It is composed of interwoven cotton yarns. A solution-based dip-coating method is used to create a functional core-shell yarn. The outer shell is coated with PDA and the inner shell is coated with aluminum (Al) surrounding the core yarn, which serves as a backbone. The Al shell serves as the RRAM electrode and the PDA is a resistive-switching layer. These functional yarns are then interwoven to create the RRAM in a lattice point. Untreated yarn is intercalated between adjacent functional yarns to avoid cell-to-cell interference. The PiFAM is applied to implement a synapse, and the feasibility of a neuromorphic device with pattern recognition accuracy of approximate to 81% and the potential for application in wearable and flexible electronic platforms is demonstrated.
更多
查看译文
关键词
artificial synapses,cotton fabric,neuromorphic devices,polydopamine,resistive random access memory (RRAM)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要