Splitting and recombination of bright-solitary-matter waves

COMMUNICATIONS PHYSICS(2020)

引用 18|浏览20
暂无评分
摘要
Atomic Bose–Einstein condensates confined in quasi-1D waveguides can support bright-solitary-matter waves when interatomic interactions are sufficiently attractive to cancel dispersion. Such solitary-matter waves are excellent candidates for highly sensitive interferometers, as their non-dispersive nature allows them to acquire phase shifts for longer times than conventional matter-wave interferometers. In this work, we demonstrate experimentally the splitting and recombination of a bright-solitary-matter wave on a narrow repulsive barrier, realizing the fundamental components of an interferometer. We show that for a sufficiently narrow barrier, interference-mediated recombination can dominate over velocity-filtering effects. Our theoretical analysis shows that interference-mediated recombination is extremely sensitive to the barrier position, predicting strong oscillations in the interferometer output as the barrier position is adjusted over just a few micrometres. These results highlight the potential of soliton interferometry, while putting tight constraints on the barrier stability needed in future experimental implementations.
更多
查看译文
关键词
Matter waves and particle beams,Ultracold gases,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要