miR-199a-3p promotes cardiomyocyte proliferation by inhibiting Cd151 expression.

Biochemical and Biophysical Research Communications(2019)

引用 26|浏览14
暂无评分
摘要
Adult mammalian cardiomyocytes have extremely limited capacity to regenerate, and it is believed that a strong intrinsic mechanism is prohibiting the cardiomyocytes from entering the cell cycle. microRNAs that promote proliferation in cardiomyocyte can be used as probes to identify novel genes suppressing cardiomyocytes proliferation, thus dissecting the mechanism(s) preventing cardiomyocytes from duplication. In particular, miR-199a-3p has been found as a potent activator of proliferation in rodent cardiomyocyte, although its molecular targets remain elusive. Here, we identified Cd151 as a direct target of miR-199a-3p, and its expression is greatly suppressed by miR-199a-3p. Cd151 gain-of-function reduced cardiomyocyte proliferation, conversely Cd151 loss-of-function increased cardiomyocytes proliferation. Overexpression of Cd151 blocks the activating effect of miR-199a-3p on cardiomyocyte proliferation, suggesting Cd151 is a functional target of miR-199a-3p in cardiomyocytes. Mechanistically, we found that Cd151 induces p38 expression, a known negative regulator of cardiomyocyte proliferation, and pharmacological inhibition of p38 rescued the inhibitory effect of Cd151 on proliferation. Together, this work proposes Cd151 as a novel suppressor of cardiomyocyte proliferation, which may provide a new molecular target for developing therapies to promote cardiac regeneration.
更多
查看译文
关键词
Cardiac regeneration,Cardiomyocyte proliferation,microRNA,miR-199a-3p,Cd151,p38
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要