Feasibility of genomic profiling with next-generation sequencing using specimens obtained by image-guided percutaneous needle biopsy.

UPSALA JOURNAL OF MEDICAL SCIENCES(2019)

引用 9|浏览8
暂无评分
摘要
Aims: The demand for specimen collection for genomic profiling is rapidly increasing in the era of personalized medicine. Percutaneous needle biopsy is recognized as minimally invasive, but the feasibility of comprehensive genomic analysis using next-generation sequencing (NGS) is not yet clear. The purpose of this study was to evaluate the feasibility of genomic analysis using NGS with specimens obtained by image-guided percutaneous needle biopsy with 18-G needles. Patients and methods: Forty-eight patients who participated in a clinical study of genomic profiling with NGS with the specimen obtained by image-guided needle biopsy were included. All biopsies were performed under local anesthesia, with imaging guidance, using an 18-G cutting needle. A retrospective chart review was performed to determine the rate of successful genomic analysis, technical success rate of biopsy procedure, adverse events, rate of success in pathological diagnosis, and cause of failed genomic analysis. Results: The success rate of genomic analysis was 79.2% (38/48). The causes of failure were unprocessed for DNA extraction due to insufficient specimen volume (6/10), insufficient DNA volume (2/10), and deteriorated DNA quality (2/10). The rate of successful genomic analysis excluding NGS analysis that failed for reasons unrelated to the biopsy procedures was 95.2% (40/42). Technical success of biopsy was achieved in all patients without severe adverse events. The rate of success in the pathological diagnosis was 97.9% (47/48). Conclusions: Image-guided needle biopsy specimens using an 18-G cutting needle yielded a successful NGS genomic analysis rate with no severe adverse events and could be an adoptable method for tissue sampling for NGS.
更多
查看译文
关键词
Biopsy,genomic analysis,needle biopsy,next-generation sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要