Development of coupling controlled polymerizations by adapter-ligation in mate-pair sequencing for detection of various genomic variants in one single assay.

DNA RESEARCH(2019)

引用 13|浏览68
暂无评分
摘要
The diversity of disease presentations warrants one single assay for detection and delineation of various genomic disorders. Herein, we describe a gel-free and biotin-capture-free mate-pair method through coupling Controlled Polymerizations by Adapter-Ligation (CP-AL). We first demonstrated the feasibility and ease-of-use in monitoring DNA nick translation and primer extension by limiting the nucleotide input. By coupling these two controlled polymerizations by a reported non-conventional adapter-ligation reaction 30 branch ligation, we evidenced that CP-AL significantly increased DNA circularization efficiency (by 4-fold) and was applicable for different sequencing methods but at a faction of current cost. Its advantages were further demonstrated by fully elimination of small-insert-contaminated (by 39.3-fold) with a similar to 50% increment of physical coverage, and producing uniform genome/exome coverage and the lowest chimeric rate. It achieved single-nucleotide variants detection with sensitivity and specificity up to 97.3 and 99.7%, respectively, compared with data from small-insert libraries. In addition, this method can provide a comprehensive delineation of structural rearrangements, evidenced by a potential diagnosis in a patient with oligo-atheno-terato-spermia. Moreover, it enables accurate mutation identification by integration of genomic variants from different aberration types. Overall, it provides a potential single-integrated solution for detecting various genomic variants, facilitating a genetic diagnosis in human diseases.
更多
查看译文
关键词
mate-pair sequencing,controlled polymerization,adapter-ligation,integrated platform
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要