Disordered hyperuniform obstacles enhance sorting of dynamically chiral microswimmers.

SOFT MATTER(2019)

引用 11|浏览0
暂无评分
摘要
Disordered hyperuniformity, a brand new type of arrangement with novel physical properties, provides various practical applications in extensive fields. To highlight the great potential of applying disordered hyperuniformity to active systems, a practical example is reported here by an optimal sorting of dynamically chiral microswimmers in disordered hyperuniform obstacle environments in comparison with regular or disordered ones. This optimal chirality sorting stems from a competition between advantageous microswimmer-obstacle collisions and disadvantageous trapping of microswimmers by obstacles. Based on this mechanism, optimal chirality sorting is also realized by tuning other parameters including the number density of obstacles, the strength of driven force and the noise intensity. Our findings may open a new perspective on both theoretical and experimental investigations for further applications of disordered hyperuniformity in active systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要