Metric Learning on Manifolds.

arXiv: Learning(2019)

引用 24|浏览31
暂无评分
摘要
Recent literature has shown that symbolic data, such as text and graphs, is often better represented by points on a curved manifold, rather than in Euclidean space. However, geometrical operations on manifolds are generally more complicated than in Euclidean space, and thus many techniques for processing and analysis taken for granted in Euclidean space are difficult on manifolds. A priori, it is not obvious how we may generalize such methods to manifolds. We consider specifically the problem of distance metric learning, and present a framework that solves it on a large class of manifolds, such that similar data are located in closer proximity with respect to the manifold distance function. In particular, we extend the existing metric learning algorithms, and derive the corresponding sample complexity rates for the case of manifolds. Additionally, we demonstrate an improvement of performance in $k$-means clustering and $k$-nearest neighbor classification on real-world complex networks using our methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要