Exome sequencing revealed a novel loss-of-function variant in the GLI3 transcriptional activator 2 domain underlies nonsyndromic postaxial polydactyly.

MOLECULAR GENETICS & GENOMIC MEDICINE(2019)

引用 16|浏览13
暂无评分
摘要
Background Polydactyly is a common genetic limb deformity characterized by the presence of extra fingers or toes. This anomaly may occur in isolation (nonsyndromic) or as part of a syndrome. The disease is broadly divided into preaxial polydactyly (PPD; duplication of thumb), mesoaxial polydactyly (complex polydactyly), and postaxial polydactyly (PAP: duplication of the fifth finger). The extra digits may be present in one or both the limbs. Heterozygous variants in the GLI3, ZRS/SHH, and PITX1 have been associated with autosomal dominant polydactyly, while homozygous variants in the ZNF141, IQCE, GLI1, and FAM92A have been associated with autosomal recessive polydactyly. Pathogenic mutations in the GLI3 gene (glioma-associated oncogene family zinc finger 3) have been associated with both nonsyndromic and syndromic polydactyly. Methods Here, we report an extended five generation kindred having 12 affected individuals exhibiting nonsyndromic postaxial polydactyly type A condition. Whole-exome sequencing followed by variant prioritization, bioinformatic studies, Sanger validation, and segregation analysis was performed. Results Using exome sequencing in the three affected individuals, we identified a novel heterozygous frameshift variant (c.3567_3568insG; p.Ala1190Glyfs*57) in the transcriptional activator (TA2) domain of the GLI3 encoding gene. Conclusion To the best of our knowledge, the present study reports on the first familial case of nonsyndromic postaxial polydactyly due to the GLI3 variant in Pakistani population. Our study also demonstrated the important role of GLI3 in causing nonsyndromic postaxial polydactyly.
更多
查看译文
关键词
GLI3,loss-of-function variant,PAPA,polydactyly,Sanger sequencing,whole exome sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要