Amido-Bridged Nucleic Acid (Amna)-Modified Antisense Oligonucleotides Targeting Alpha-Synuclein As A Novel Therapy For Parkinson'S Disease

SCIENTIFIC REPORTS(2019)

引用 56|浏览36
暂无评分
摘要
Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. A characteristic pathological feature of PD is cytoplasmic accumulation of a-synuclein (SNCA) protein. Multiplication of the SNCA gene in familial PD and pathological accumulation of SNCA protein during progression of sporadic PD suggest that increased SNCA protein levels increase the risk of PD. Thus, reducing SNCA expression levels could delay PD onset or modify the disease course. For efficient knock down, we designed and synthesized an amido-bridged nucleic acids (AmNA)-modified antisense oligonucleotide (ASO) that targeted SNCA with improved stability and cellular uptake in vivo. AmNA-ASO efficiently downregulated SNCA at both the mRNA and protein level in vitro and in vivo. Notably, AmNA-ASO was efficiently delivered into the mouse brain by intracerebroventricular injection without the aid of additional chemicals. Furthermore, administration of AmNA-ASO ameliorated neurological defects in PD model mice expressing human wild type SNCA. Taken together, these findings suggest that AmNA-ASO is a promising therapeutic strategy for SNCA-associated pathology in PD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要