ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems

Computer Physics Communications(2020)

引用 66|浏览0
暂无评分
摘要
ExaHyPE (“An Exascale Hyperbolic PDE Engine”) is a software engine for solving systems of first-order hyperbolic partial differential equations (PDEs). Hyperbolic PDEs are typically derived from the conservation laws of physics and are useful in a wide range of application areas. Applications powered by ExaHyPE can be run on a student’s laptop, but are also able to exploit thousands of processor cores on state-of-the-art supercomputers. The engine is able to dynamically increase the accuracy of the simulation using adaptive mesh refinement where required. Due to the robustness and shock capturing abilities of ExaHyPE’s numerical methods, users of the engine can simulate linear and non-linear hyperbolic PDEs with very high accuracy. Users can tailor the engine to their particular PDE by specifying evolved quantities, fluxes, and source terms. A complete simulation code for a new hyperbolic PDE can often be realised within a few hours — a task that, traditionally, can take weeks, months, often years for researchers starting from scratch. In this paper, we showcase ExaHyPE’s workflow and capabilities through real-world scenarios from our two main application areas: seismology and astrophysics.
更多
查看译文
关键词
Hyperbolic,PDE,ADER-DG,Finite volumes,AMR,MPI,TBB,MPI+X
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要