Myosin II Tension Sensors Visualize Force Generation within the Actin Cytoskeleton in Living Cells

bioRxiv(2019)

引用 1|浏览13
暂无评分
摘要
Type II myosin motors generate cytoskeletal forces that are central to cell division, embryogenesis, muscle contraction, and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here we describe a Forster resonance energy transfer (FRET) based tension sensor that can measure forces generated by Nonmuscle Myosin IIB (NMIIB) in living cells with piconewton (pN) sensitivity. Fluorescence lifetime imaging microscopy (FLIM) FRET measurements indicate that the forces generated by NMIIB exhibit significant spatial and temporal heterogeneity, with inferred tensions that vary widely in different regions of the cell. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要