To Improve Protein Sequence Profile Prediction through Image Captioning on Pairwise Residue Distance Map.

bioRxiv(2020)

引用 32|浏览1
暂无评分
摘要
Protein sequence profile prediction aims to generate multiple sequences from structural information to advance the protein design. Protein sequence profile can be computationally predicted by energy-based or fragment-based methods. By integrating these methods with neural networks, our previous method, SPIN2, has achieved a sequence recovery rate of 34%. However, SPIN2 employed only one-dimensional (1D) structural properties that are not sufficient to represent three-dimensional (3D) structures. In this study, we represented 3D structures by 2D maps of pairwise residue distances and developed a new method (SPROF) to predict protein sequence profiles based on an image captioning learning frame. To our best knowledge, this is the first method to employ a 2D distance map for predicting protein properties. SPROF achieved 39.8% in sequence recovery of residues on the independent test set, representing a 5.2% improvement over SPIN2. We also found the sequence recovery increased with the number of their neighbored residues in 3D structural space, indicating that our method can effectively learn long-range information from the 2D distance map. Thus, such network architecture using a 2D distance map is expected to be useful for other 3D structure-based applications, such as binding site prediction, protein function prediction, and protein interaction prediction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要