Retrieval of snow water equivalent, liquid water content and snow height of dry and wet snow by combining GPS signal attenuation and time delay

WATER RESOURCES RESEARCH(2019)

引用 40|浏览9
暂无评分
摘要
For numerous hydrological applications, information on snow water equivalent (SWE) and snow liquid water content (LWC) are fundamental. In situ data are much needed for the validation of model and remote sensing products; however, they are often scarce, invasive, expensive, or labor-intense. We developed a novel nondestructive approach based on Global Positioning System (GPS) signals to derive SWE, snow height (HS), and LWC simultaneously using one sensor setup only. We installed two low-cost GPS sensors at the high-alpine site Weissfluhjoch (Switzerland) and processed data for three entire winter seasons between October 2015 and July 2018. One antenna was mounted on a pole, being permanently snow-free; the other one was placed on the ground and hence seasonally covered by snow. While SWE can be derived by exploiting GPS carrier phases for dry-snow conditions, the GPS signals are increasingly delayed and attenuated under wet snow. Therefore, we combined carrier phase and signal strength information, dielectric models, and simple snow densification approaches to jointly derive SWE, HS, and LWC. The agreement with the validation measurements was very good, even for large values of SWE (>1,000 mm) and HS (> 3 m). Regarding SWE, the agreement (root-mean-square error (RMSE); coefficient of determination (R-2)) for dry snow (41 mm; 0.99) was very high and slightly better than for wet snow (73 mm; 0.93). Regarding HS, the agreement was even better and almost equally good for dry (0.13 m; 0.98) and wet snow (0.14 m; 0.95). The approach presented is suited to establish sensor networks that may improve the spatial and temporal resolution of snow data in remote areas.
更多
查看译文
关键词
snow water equivalent,liquid water content,snow cover,SnowSense,GNSS signals,Global Positioning System
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要