Density Matrix Based Preference Evolution Networks For E-Commerce Recommendation

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2019), PT II(2019)

引用 3|浏览37
暂无评分
摘要
In e-commerce platforms, mining temporal characteristics in user behavior is conducive to recommend the right product for the user at the right time. Recently, recurrent neural networks (RNNs) based methods have achieved profitable performance in exploring temporal features, however, in complex e-commerce scenarios, user preferences changing over time have not been fully exploited. In order to fill the gap, we propose a novel representation for user preferences with the inspiration of a quantum concept, density matrix. It encodes a mixture of item subspaces and represents distribution of user preferences at one time stamp. Further, such a representation and RNNs are combined to form our proposed Density Matrix based Preference Evolution Networks (DMPENs). Experiments on Amazon datasets as well as real-world e-commerce datasets demonstrate the effectiveness of the proposed methods, which achieve rapid convergence and superior performance compared with the state-of-the-art methods in terms of AUC and accuracy.
更多
查看译文
关键词
E-commerce recommendation, Recurrent neural networks, Density matrix
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要