Lewis acidity controlled heme catalyst for lithium-oxygen battery

Energy Storage Materials(2019)

引用 11|浏览79
暂无评分
摘要
Despite their high theoretical energy density, lithium-oxygen (Li−O2) batteries suffer from limited cyclability originating from poor charging efficiency. In an effort to overcome this critical issue, a variety of catalysts have been introduced, but much room still remains for further advancement in catalyst design. By benchmarking hemoglobin in red blood cells that carry oxygen at a well-defined center of the molecular cage, herein, we report heme as an air-cathode catalyst with iron (Fe) active sites. Furthermore, the coordination of electron-withdrawing ligands, such as thiocyanate (SCN) and azide (N3), to the Fe center enhances its Lewis acidity to weaken the binding of oxygen intermediates (O2∗) towards more facile decomposition of the main discharging product (Li2O2). Density functional theory calculations and surface energy analysis of Fe coherently support the advantageous role of the ligand engineering in enhancing the reversibility of a Li−O2 battery.
更多
查看译文
关键词
Charging overpotential,Heme,Lewis acid,Li−O2 battery,Oxygen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要