Injectable Self-Healing Antibacterial Bioactive Polypeptide-Based Hybrid Nanosystems for Efficiently Treating Multidrug Resistant Infection, Skin-Tumor Therapy, and Enhancing Wound Healing (vol 29, 1806883, 2019)

ADVANCED FUNCTIONAL MATERIALS(2021)

引用 179|浏览7
暂无评分
摘要
The surgical procedure in skin-tumor therapy usually results in cutaneous defects, and multidrug-resistant bacterial infection could cause chronic wounds. Here, for the first time, an injectable self-healing antibacterial bioactive polypeptide-based hybrid nanosystem is developed for treating multidrug resistant infection, skin-tumor therapy, and wound healing. The multifunctional hydrogel is successfully prepared through incorporating monodispersed polydopamine functionalized bioactive glass nanoparticles (BGN@PDA) into an antibacterial F127-epsilon-Poly-L-lysine hydrogel. The nanocomposites hydrogel displays excellent self-healing and injectable ability, as well as robust antibacterial activity, especially against multidrug-resistant bacteria in vitro and in vivo. The nanocomposites hydrogel also demonstrates outstanding photothermal performance with (near-infrared laser irradiation) NIR irradiation, which could effectively kill the tumor cell (>90%) and inhibit tumor growth (inhibition rate up to 94%) in a subcutaneous skin-tumor model. In addition, the nanocomposites hydrogel effectively accelerates wound healing in vivo. These results suggest that the BGN-based nanocomposite hydrogel is a promising candidate for skin-tumor therapy, wound healing, and anti-infection. This work may offer a facile strategy to prepare multifunctional bioactive hydrogels for simultaneous tumor therapy, tissue regeneration, and anti-infection.
更多
查看译文
关键词
bioactive nanosystems, multifunctional biomaterials, tissue engineering, tumor therapy, wound healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要